6,114 research outputs found

    Vaccine strategy when the smallpox model fails: 1. immune cognition, Malaria and the Fulani

    Get PDF
    We begin to examine the implications of IR Cohen's work on immune cognition [1-3] for vaccine strategies when simple elicitation of sterilizing immunity fails, as is the case for HIV, tuberculosis, and malaria. Cohen's approach takes on a special importance in the context of recent work by Nisbett et al. [4] showing clearly that central nervous system (CNS) cognition is not universal, but rather differs fundamentally for populations having different cultural systems. A growing body of evolutionary anthropology indeed suggests that such effects are inevitable, since culture is as much a part of human biology 'as the enamel on our teeth.' Thus a successful vaccine strategy for use when the smallpox model fails must address a condensation of sociocultural and immune cognition, in the same sense that neuroimmunology and immunogenetics describe the condensation of CNS and genetic 'languages' with immune function. We reinterpret recent studies of African cultural variation in immune response to malaria from this perspective

    Structured Psychosocial Stress and Therapeutic Intervention: Toward a Realistic Biological Medicine

    Get PDF
    Using generalized 'language of thought' arguments appropriate to interacting cognitive modules, we explore how disease states can interact with medical treatment, including, but not limited to, drug therapy. The feedback between treatment and response creates a kind of idiotypic 'hall of mirrors' generating a pattern of 'efficacy', 'treatment failure', and 'adverse reactions' which will, from a Rate Distortion perspective, embody a distorted image of externally-imposed structured psychosocial stress. This analysis, unlike current pharmacogenetics, does not either reify 'race' or blame the victim by using genetic structure to place the locus-of-control within a group or individual. Rather, it suggests that a comparatively simple series of questions to identify longitudinal and cross-sectional stressors may provide more effective guidance for specification of individual therapy than complicated genotyping strategies of dubious meaning. These latter are likely to be both very expensive and utterly blind to the impact of structured psychosocial stress -- a euphemism for various forms of racism and ethnic cleansing -- which, we contend, is often a principal determinant of treatment outcome at both individual and community levels of organization. We propose, to effectively address 'health disparities' between populations, and in contrast to current biomedical ideology based on a simplistic genetic determinism, a richer program of biological medicine reflecting Lewontin's 'triple helix' of genes, environment, and development, a program more in concert with the realities of a basic human biology marked by hypersociality unusual in vertibrates. Aggressive social, economic, and other policies of affirmative action to redress the persisting burdens of history would be an integral component of any such project

    Colonization of malaria vectors under semi-field conditions as a strategy for maintaining genetic and phenotypic similarity with wild populations

    Get PDF
    Background Malaria still accounts for an estimated 207 million cases and 627,000 deaths worldwide each year. One proposed approach to complement existing malaria control methods is the release of genetically-modified (GM) and/or sterile male mosquitoes. As opposed to laboratory colonization, this requires realistic semi field systems to produce males that can compete for females in nature. This study investigated whether the establishment of a colony of the vector Anopheles arabiensis under more natural semi-field conditions can maintain higher levels of genetic diversity than achieved by laboratory colonization using traditional methods.<p></p> Methods Wild females of the African malaria vector An. arabiensis were collected from a village in southern Tanzania and used to establish new colonies under different conditions at the Ifakara Health Institute. Levels of genetic diversity and inbreeding were monitored in colonies of An. arabiensis that were simultaneously established in small cage colonies in the SFS and in a large semi-field (SFS) cage and compared with that observed in the original founder population. Phenotypic traits that determine their fitness (body size and energetic reserves) were measured at 10th generation and compared to founder wild population.<p></p> Results In contrast to small cage colonies, the SFS population of An. arabiensis exhibited a higher degree of similarity to the founding field population through time in several ways: (i) the SFS colony maintained a significantly higher level of genetic variation than small cage colonies, (ii) the SFS colony had a lower degree of inbreeding than small cage colonies, and (iii) the mean and range of mosquito body size in the SFS colony was closer to that of the founding wild population than that of small cage colonies. Small cage colonies had significantly lower lipids and higher glycogen abundances than SFS and wild population.<p></p> Conclusions Colonization of An. arabiensis under semi-field conditions was associated with the retention of a higher degree of genetic diversity, reduced inbreeding and greater phenotypic similarity to the founding wild population than observed in small cage colonies. Thus, mosquitoes from such semi-field populations are expected to provide more realistic representation of mosquito ecology and physiology than those from small cage colonies.<p></p&gt

    Human Leukocyte Antigen Diversity: A Southern African Perspective

    Get PDF
    Despite the increasingly well-documented evidence of high genetic, ethnic, and linguistic diversity amongst African populations, there is limited data on human leukocyte antigen (HLA) diversity in these populations. HLA is part of the host defensemechanism mediated through antigen presentation to effector cells of the immune system. With the high disease burden in southern Africa, HLA diversity data is increasingly important in the design of population-specific vaccines and the improvement of transplantation therapeutic interventions. This review highlights the paucity of HLA diversity data amongst southern African populations and defines a need for information of this kind.This information will support disease association studies, provide guidance in vaccine design, and improve transplantation outcomes.The Medical Research Council of South Africa in terms of MRC’s Flagships Awards Project SAMRCRFA-UFSP-01-2013/STEM CELLS, the Institute for Cellular and Molecular Medicine of the University of Pretoria, and the National Research Foundation of South Africa.http://www.hindawi.com/journals/jiram2016Immunolog

    Diversity, differentiation, and linkage disequilibrium: prospects for association mapping in the malaria vector anopheles arabiensis

    Get PDF
    Association mapping is a widely applied method for elucidating the genetic basis of phenotypic traits. However, factors such as linkage disequilibrium and levels of genetic diversity influence the power and resolution of this approach. Moreover, the presence of population subdivision among samples can result in spurious associations if not accounted for. As such, it is useful to have a detailed understanding of these factors before conducting association mapping experiments. Here we conducted whole-genome sequencing on 24 specimens of the malaria mosquito vector, Anopheles arabiensis, to further understanding of patterns of genetic diversity, population subdivision and linkage disequilibrium in this species. We found high levels of genetic diversity within the An. arabiensis genome, with ~800,000 high-confidence, single- nucleotide polymorphisms detected. However, levels of nucleotide diversity varied significantly both within and between chromosomes. We observed lower diversity on the X chromosome, within some inversions, and near centromeres. Population structure was absent at the local scale (Kilombero Valley, Tanzania) but detected between distant populations (Cameroon vs. Tanzania) where differentiation was largely restricted to certain autosomal chromosomal inversions such as 2Rb. Overall, linkage disequilibrium within An. arabiensis decayed very rapidly (within 200 bp) across all chromosomes. However, elevated linkage disequilibrium was observed within some inversions, suggesting that recombination is reduced in those regions. The overall low levels of linkage disequilibrium suggests that association studies in this taxon will be very challenging for all but variants of large effect, and will require large sample sizes

    Immune cognition and culture: implications for the AIDS vaccine

    Get PDF
    We examine the implications of IR Cohen's 'cognitive principle' address of the immune system [1-3] for the HIV vaccine program. This approach takes on a special importance in the context of recent work by Nisbett et al. [4] showing clearly that central nervous system (CNS) cognition is fundamentally different for populations having different cultural systems, and in the context of a growing body of evolutionary anthropology which suggests that such effects are inevitable, since culture is as much a part of human biology 'as the enamel on our teeth'

    Inactivation of Plasmodium falciparum in whole blood by riboflavin plus irradiation.

    No full text
    BACKGROUND: Malaria parasites are frequently transmitted by unscreened blood transfusions in Africa. Pathogen reduction methods in whole blood would thus greatly improve blood safety. We aimed to determine the efficacy of riboflavin plus irradiation for treatment of whole blood infected with Plasmodium falciparum. STUDY DESIGN AND METHODS: Blood was inoculated with 10(4) or 10(5) parasites/mL and riboflavin treated with or without ultraviolet (UV) irradiation (40-160 J/mL red blood cells [mL(RBCs)]). Parasite genome integrity was assessed by quantitative amplification inhibition assays, and P. falciparum viability was monitored in vitro. RESULTS: Riboflavin alone did not affect parasite genome integrity or parasite viability. Application of UV after riboflavin treatment disrupted parasite genome integrity, reducing polymerase-dependent amplification by up to 2 logs (99%). At 80 J/mL(RBCs), riboflavin plus irradiation prevented recovery of viable parasites in vitro for 2 weeks, whereas untreated controls typically recovered to approximately 2% parasitemia after 4 days of in vitro culture. Exposure of blood to 160 J/mL(RBCs) was not associated with significant hemolysis. CONCLUSIONS: Riboflavin plus irradiation treatment of whole blood damages parasite genomes and drastically reduces P. falciparum viability in vitro. In the absence of suitable malaria screening assays, parasite inactivation should be investigated for prevention of transfusion-transmitted malaria in highly endemic areas

    The genetic basis of host preference and resting behavior in the major African malaria vector, Anopheles arabiensis

    Get PDF
    Malaria transmission is dependent on the propensity of Anopheles mosquitoes to bite humans (anthropophily) instead of other dead end hosts. Recent increases in the usage of Long Lasting Insecticide Treated Nets (LLINs) in Africa have been associated with reductions in highly anthropophilic and endophilic vectors such as Anopheles gambiae s.s., leaving species with a broader host range, such as Anopheles arabiensis, as the most prominent remaining source of transmission in many settings. An. arabiensis appears to be more of a generalist in terms of its host choice and resting behavior, which may be due to phenotypic plasticity and/or segregating allelic variation. To investigate the genetic basis of host choice and resting behavior in An. arabiensis we sequenced the genomes of 23 human-fed and 25 cattle-fed mosquitoes collected both in-doors and out-doors in the Kilombero Valley, Tanzania. We identified a total of 4,820,851 SNPs, which were used to conduct the first genome-wide estimates of “SNP heritability”for host choice and resting behavior in this species. A genetic component was detected for host choice (human vs cow fed; permuted P = 0.002), but there was no evidence of a genetic component for resting behavior (indoors versus outside; permuted P = 0.465). A principal component analysis (PCA) segregated individuals based on genomic variation into three groups which were characterized by differences at the 2Rb and/or 3Ra paracentromeric chromosome inversions. There was a non-random distribution of cattle-fed mosquitoes between the PCA clusters, suggesting that alleles linked to the 2Rb and/or 3Ra inversions may influence host choice. Using a novel inversion genotyping assay, we detected a significant enrichment of the standard arrangement (non-inverted) of 3Ra among cattle-fed mosquitoes (N = 129) versus all non-cattle-fed individuals. Thus, tracking the frequency of the 3Ra in An. arabiensis populations may be of use to infer selection on host choice behavior within these vector populations; possibly in response to vector control. Controlled host-choice assays are needed to discern whether the observed genetic component has a direct relationship with innate host preference. A better understanding of the genetic basis for host feeding behavior in An. arabiensis may also open avenues for novel vector control strategies based on driving genes for zoophily into wild mosquito populations
    corecore